A BIOLOGIST'S INSIGHT INTO THE DEVELOPMENT OF NEW DRUGS AND MEDICAL DEVICES

Joanne Archambault PhD (Biology)

FR>EN translator

STORY OF MYOREPAIR & SILKNEE

- MYOREPAIR: a new biologic drug undergoing <u>preclinical</u> development
- The pharmaceutical company that discovered MYOREPAIR believes that it could help injured muscles heal faster
- SILKNEE: a new medical device undergoing <u>preclinical</u> development
- The orthopedics company that invented SILKNEE believes that it can replace damaged knee ligaments

STORY TOLD BY

Joanne Archambault, PhD (Biology)

- 15 years of biomedical research experience
- Preclinical research work at Wyeth (now Pfizer)
 - Biologic drug now in Phase I clinical trials
- New product development group at Stryker
 - Novel orthopedic medical device did NOT go into human trials
- Translate French > English
 - French orthopedic companies
 - French orthopedic research journal
 - Pharmaceutical / biotechnology projects via agency clients

MYOREPAIR

New Drug

MYOREPAIR

MYOREPAIR: a new (protein) drug undergoing preclinical development

- Indication: help injured muscles heal faster
 - Use once per day until muscle is completely healed
- Prescribed by a doctor
- Will be delivered directly to injured muscle with device similar to insulin pen
- Target market: professional athletes with muscle injuries

PRECLINICAL DEVELOPMENT

- Manufacturing
- Formulation
- Sterility
- Stability
- Packaging
- Delivery device
- Antibodies
- Biomarkers

- Antibodies
 - Safety issue
 - Interferes with efficacy
- Biomarkers
 - Toxicity
 - Patient population
 - Predict efficacy

ANTIBODIES

WHAT – Molecule that binds to a foreign protein
Triggers immune response
Immunogenicity: <u>unwanted</u> immune response to drug

WHY -

Causes side effects and reduces efficacy of drug

WHERE – Blood, muscle tissue

HOW – ELISA (enzyme-linked immunosorbent assay)

WHEN – Preclinical testing, Phase I, II, III trials

IMMUNOGENICITY

Regulatory guidance

- EMA guidance on immunogenicity for biologicals
- FDA Guidance for Immunogenicity Testing
- Measure anti-drug antibodies in patients treated with biologic drug (protein-based drug)

Assays used to detect anti-drug antibodies

- Look for binding antibodies
- Look for neutralizing antibodies
- Develop during preclinical phase and validate during human clinical trials
 - Antibody response in humans generally cannot be predicted from animal studies!

ANTIBODIES TO MYOREPAIR

ELISA format

- Drug = MYOREPAIR
- Test patient serum for anti-drug antibodies (Ab)
- Compare to serum from same patient <u>before</u> he/she received the drug

Results may alter development plan

PRECLINICAL DEVELOPMENT

- Manufacturing
- Formulation
- Sterility
- Stability
- Packaging
- Delivery device
- Antibodies
- Biomarkers

- Antibodies
 - Safety issue
 - Interferes with efficacy
- Biomarkers
 - Toxicity
 - Patient population
 - Predict efficacy

BIOMARKERS

WHAT – Indicator of physiological response to drug
WHY –

- Help to determine preclinical toxicity
- Define population most likely to benefit from drug (safety)
- Predict outcome of treatment (efficacy)
- WHERE Blood, saliva, urine, muscle tissue
- HOW ELISA, imaging, genomics, proteomics
- WHEN Preclinical testing, Phase I, II, III trials

PRECLINICAL TOXICITY

Preclinical animal testing required to determine toxicity of every new drug

- Biomarkers can extend testing beyond histopathology
- Assess blood cytokine, chemokine, and growth factor levels

Look for signs of toxicity and inflammation

- Evaluate differences between groups of animals
 - Vehicle-treated (control)
 - MYOREPAIR-treated

IMPROVE SAFETY

Pharmacogenomics

- How genetic differences in individuals affect the way people respond to drugs
- Get the right drug to the right patient

Patient selection biomarkers

- Predict response to molecular-targeted agents
- Enrich trials with patients more likely to benefit and least likely to have side effects from drug

PREDICT EFFICACY

Find marker(s) that can predict outcome FASTER than waiting for clinical end-point

Approaches:

- Genomics (transcriptional profiling)
- Proteomics
- Metabolomics
- Compare:
 - Normal muscle
 - Injured muscle
 - MYOREPAIR-treated normal muscle
 - MYOREPAIR-treated injured muscle

QUESTIONS?

SILKNEE

New Medical Device

SILKNEE

SILKNEE: a new medical device undergoing preclinical development

- Indication: replacement of torn ACL (knee ligament)
- Made from silk that is braided into a small rope
- Available in different lengths
- Will be implanted by an orthopedic surgeon
- Target market: skiers with knee injury

PRECLINICAL DEVELOPMENT

- Product design
- Manufacturing
- Packaging
- Instrumentation
- Instructions for use
- Sterility
- Biocompatibility

- Sterility
 - ISO standards
 - Sterilization
 - Validation
- Biocompatibility
 - ISO standards
 - Type of material
 - Duration of exposure

STERILITY

Sterile:

Free from viable micro-organisms

Sterilization:

Validated process used to render product free from viable micro-organisms

Types of sterilization:

- Gamma radiation / E-beam radiation
- Chemical Ethylene Oxide
- Moist heat (steam)

Proper packaging needed to maintain sterility

ANSI/AAMI/ISO 11137

Sterilization of health care products — Radiation

- Part 1: Requirements for development, validation and routine control of a sterilization process for medical devices
- Part 2: Establishing the sterilization dose
- Part 3: Guidance on dosimetric aspects

DEFINITIONS

Bioburden:

- Population of viable microorganisms on product
- Determined <u>BEFORE</u> sterilization
- CFU: colony forming unit

Sterility test:

Are viable micro-organisms present on product?

SAL – sterility assurance level

- Probability of having a viable micro-organism on product after sterilization
- Surgically implanted devices \rightarrow 10⁻⁶ SAL
- Probability of 1 in 1,000,000 of finding <u>non-sterile</u> unit after sterilization

OVERVIEW - GAMMA STERILIZATION VALIDATION PROCESS

1) Product design

Device materials, packaging

2) Determine bioburden

 Test 10 product items from three different production batches (total of 30 product items)

3) Determine verification dose

- Reference tables in ANSI/AAMI/ISO 11137
- Required radiation dose to apply to the product in KiloGrays (kGy) to achieve a specified SAL
- 4) Apply verification dose to product
 - Dosimeters used to monitor radiation dose applied

OVERVIEW - GAMMA STERILIZATION VALIDATION PROCESS

5) Test sterility

Confirm that all viable micro-organisms have been removed

6) Determine sterilization dose

- Reference tables in ANSI/AAMI/ISO 11137
- Choose sterilization dose to achieve desired SAL
- 7) Determine dose range
 - Large volume of products being sterilized
 - Range up to 2x sterilization dose
- 8) Dose mapping
 - Distribution of dose throughout irradiator
- 9) Routine processing / Dose audits

PRECLINICAL DEVELOPMENT

- Product design
- Manufacturing
- Packaging
- Instrumentation
- Instructions for use
- Sterility
- Biocompatibility

- Sterility
 - Sterilization
 - ISO standards
 - Assurance
- Biocompatibility
 - ISO standards
 - Type of material
 - Duration of exposure

WHAT IS BIOCOMPATIBILITY?

- Interaction between medical device and tissues/fluids of the patient treated with device
- One component of overall safety assessment for devices
- Biocompatibility of device depends on several factors
 - Chemical and physical nature of materials in the device
 - Types of patient tissue that will be exposed to the device
 - Duration of exposure
- Primary purpose is to ensure patient safety!

ISO 10993 – FDA*, EUROPE, ASIA

ISO 10993 - Biological evaluation of medical devices

- Part 1: Evaluation and testing in the risk management process
- Part 2: Animal welfare requirements
- Part 5: Tests for in vitro cytotoxicity
- Part 6: Tests for local effects after implantation
- Part 11: Tests for systemic toxicity
- Part 12: Sample preparation and reference materials
- Part 13: Identification and quantification of degradation products from polymeric medical devices
- Part 18: Chemical characterization of materials

*FDA has additional requirements (USP <88>)

ISO 10993-1

Materials Biocompatibility Matrix

Device Categorized as:			Biological Effects									
Body Contact		Contact Duration Limited •Less than 24 hours Prolonged •24 hours to 30 days Permanent •Over 30 days	Cytotoxicity	Sensitization	Irritation or Intracutaneous Reactivity	Systemic Toxicity (acute)	Subacute and Subchronic Toxicity	Genotoxicity	Implantation	Hemocompatibility	Chronic Toxicity	Carcinogenicity
Implant device	Tissue/Bone	Limited	٠	•	٠							
		Prolonged	+	•	٠	٠	•	٠	٠			
		Permanent	٠	•	+	٠	•	٠	٠			
	Blood	Limited	+	•	•	•	•		•	+	•	
		Prolonged	•	•	+	٠	•	٠	٠	٠	٠	
		Permanent	٠	٠	٠	٠	•	٠	٠	٠	٠	٠

27-0CT-2011

ATA 2011- MED-3 - ARCHAMBAULT

TESTING IMPLANT BIOCOMPATIBILITY

- Implantation
 - Put directly in animal

- Systemic toxicity
- Skin irritation
- Sensitization /

Inject extract of the implant

EXTRACTS

Extraction vehicles:

- Polar: 0.9% sodium chloride (saline)
- Non-polar: vegetable oil
- USP <88>: polyethylene glycol and alcohol in sodium chloride solution
- Extraction ratio (ISO 10993 Part 12)
 - Thickness > 1 mm: 25 cm² per 20 ml
- Incubate (heat, time, shaking)
- Inject into animal
- Compare with animals receiving extraction vehicle only

QUESTIONS?

27-0CT-2011

ATA 2011- MED-3 - ARCHAMBAULT

STORY OF MYOREPAIR & SILKNEE

- MYOREPAIR: a new biologic drug undergoing <u>preclinical</u> development
- Based on the Stamulumab (MYO-029) drug that was being developed by Wyeth for muscular dystrophy in mid-2000s

- SILKNEE: a new medical device undergoing <u>preclinical</u> development
- Based on product by Serica Technologies (now owned by Allergan)

THE END

Contact information:

- Joanne Archambault, PhD
- joannearch@gmail.com
- www.traduction-ortho.com
- +1 617-447-5193 (mobile)